Основные понятия теории графов

Граф – система, которая интуитивно может быть рассмотрена как множество кружков и множество соединяющих их линий (рис. 1).

Кружки называются вершинами графа, линии со стрелками – дугами, без стрелок – ребрами. Граф, в котором направление линий не выделяется (все линии являются ребрами), называется неориентированным (рис. 1, А); граф, в котором направление линий принципиально (линии являются дугами) называется ориентированным (рис. 1, Б).

Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Будем обозначать вполне несвязный граф с п вершинами через Nn; N4 показан на рис. 1. Заметим, что у

вполне несвязного графа все вершины изолированы. Вполне несвязные графы не представляют особого интереса.

Простой граф, в котором любые две вершины смежны, называется полным графом.

Полный граф с n вершинами обычно обозначается через . Графы и изображены на рис. 2 и 3. имеет ровно n (n – 1)/2 ребер.

Регулярные графы

. Граф, у которого все вершины имеют одну и ту же степень, называется регулярным графом.

Если степень каждой вершины равна r, то граф называется регулярным степени

r

.

Регулярные графы степени 3, называемые также кубическими

(или трехвалентными)

графами (см., например, рис. 2 и 4). Другим известным примером кубического графа является так называемый граф Петерсена,

показанный на рис. 5. Отметим, что каждый вполне несвязный граф является регулярным степени 0, а каждый полный граф Кn – регулярным степени n – 1.

Среди регулярных графов особенно интересны так называемые Платоновы графы – графы образованные вершинами и ребрами пяти правильных многогранников – платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра. Граф соответствует тетраэдру (рис. 2); графы, соответствующие кубу и октаэдру, показаны на рис. 5 и 6;

Двудольные графы

. Допустим, что множество вершин графа можно разбить на два непересекающихся подмножества V1 и V2 так, что каждое ребро в G соединяет какую-нибудь вершину из V1 с какой-либо вершиной из V2 (рис. 7);

тогда G называется двудольным графом. Такие графы иногда обозначают G(V1,V2), если хотят выделить два указанных подмножества. Двудольный граф можно определить и по-другому – в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы любое ребро имело один конец красный, а другой – синий. Следует подчеркнуть, что в двудольном графе совсем не обязательно каждая вершина из V1 соединена с каждой вершиной из V2; если же это так и если при этом граф G простой, то он называется полным двудольным графом

и обычно обозначается где m, n – число вершин соответственно в V1 и V2. Например, на рис. 8 изображен

граф K4,3. Заметим, что граф имеет ровно m + n вершин и mn ребер. Полный двудольный граф вида называется звездным графом; на рис. 9 изображен звездный граф .

Перейти на страницу: 1 2 3